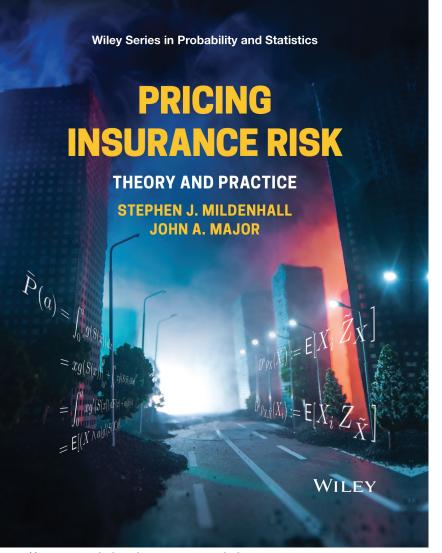


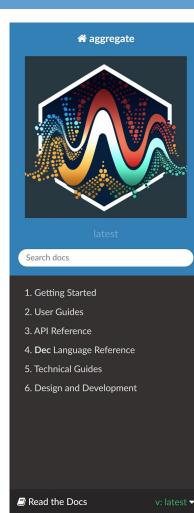
Pricing Insurance Risk: Theory and Practice

Stephen J. Mildenhall SCOR Insurance September 19, 2023

Licensed by Stephen J Mildenhall under Creative Commons Attribution 4.0 International



http://www.pricinginsurancerisk.com



https://aggregate.readthedocs.io/en/latest/

☆ / aggregate Documentation

C Edit on GitHub

Next 🖸

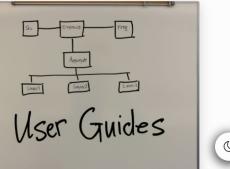
aggregate Documentation

Introduction

aggregate solves insurance, risk management, and actuarial problems using realistic models that reflect underlying frequency and severity. It delivers the speed and accuracy of parametric distributions to situations that usually require simulation, making it as easy to work with an aggregate (compound) probability distribution as the lognormal. **aggregate** includes an expressive language called DecL to describe aggregate distributions and is implemented in Python under an open source BSD-license.

This help document is in six parts plus a bibliography.

Getting Started



Four Themes

Insurers aggregate contracts specifying contingent cash flows. Motivation matters: price depends on who initiates the transaction.

Spectral methods reflect motivation and link risk appetite to price. aggregate Python package provides an open-source implementation.

Ins Co.: One-period insurer, no default*

t = 1 Loss payments \leftarrow

← Collateral or Capital
 → Residual collateral or assets

* Default is an important but irrelevant complication

	X1	X2	Х3	X4
0	36	0	29	35
1	40	0	25	35
2	28	0	37	35
3	22	0	43	35
4	33	7	25	35
5	32	8	25	35
6	31	9	25	35
7	45	10	10	35
8	25	40	0	35
9	25	75	0	0

- Cash flows from insurer to each counter-party at t = 1
- Ten scenarios, 0-9 (Python...)
- Scenarios equally likely

	X1	X2	Х3	X4	total
0	36	0	29	35	100
1	40	0	25	35	100
2	28	0	37	35	100
3	22	0	43	35	100
4	33	7	25	35	100
5	32	8	25	35	100
6	31	9	25	35	100
7	45	10	10	35	100
8	25	40	0	35	100
9	25	75	0	0	100

- Payments sum to 100 in every scenario
- No net risk
- Risk-free rate zero
- Starting assets must equal 100
- No net risk margin
- Starting assets funded by amounts paid at *t* = 0 to purchase each flow

	X1	X2	Х3	X4	total
0	36	0	29	35	100
1	40	0	25	35	100
2	28	0	37	35	100
3	22	0	43	35	100
4	33	7	25	35	100
5	32	8	25	35	100
6	31	9	25	35	100
7	45	10	10	35	100
8	25	40	0	35	100
9	25	75	0	0	100
EX	31.700	14.900	21.900	31.500	100
cv	0.215	1.545	0.623	0.333	0
Skew	0.456	1.791	-0.369	-2.667	0

- X₁, X₂ appear insurance-like
 - Moderate to high CV
 - Positive skewness
- X₁ non-cat line
 - Attritional payments in all scenarios
 - Moderate CV
- X₂ cat line
 - -40% chance of no payment
 - Extreme CV and skewness

	X1	X2	Х3	X4	total
0	36	0	29	35	100
1	40	0	25	35	100
2	28	0	37	35	100
3	22	0	43	35	100
4	33	7	25	35	100
5	32	8	25	35	100
6	31	9	25	35	100
7	45	10	10	35	100
8	25	40	0	35	100
9	25	75	0	0	100
EX	31.700	14.900	21.900	31.500	100
cv	0.215	1.545	0.623	0.333	0
Skew	0.456	1.791	-0.369	-2.667	0

- X₃, X₄ capital or reinsurance-like
 - Negative correlation with $X_1 + X_2$
 - Negative skewness
- X₄ return of collateral on a 35 xs 65 aggregate cover
 - Return 35 = no ceded loss
 - Return 0 = limit loss
 - E.g., cat bond
- X₃ residual value
 - Equity

	X1	X2	Х3	X4	total	Gross	Ceded	Net	Financing
0	36	0	29	35	100	36	0	36	64
1	40	0	25	35	100	40	0	40	60
2	28	0	37	35	100	28	0	28	72
3	22	0	43	35	100	22	0	22	78
4	33	7	25	35	100	40	0	40	60
5	32	8	25	35	100	40	0	40	60
6	31	9	25	35	100	40	0	40	60
7	45	10	10	35	100	55	0	55	45
8	25	40	0	35	100	65	0	65	35
9	25	75	0	0	100	100	35	65	0
EX	31.700	14.900	21.900	31.500	100	46.600	3.500	43.100	53.400
cv	0.215	1.545	0.623	0.333	0	0.515			0.322
Skew	0.456	1.791	-0.369	-2.667	0	1.590			-0.788

- X₁ non-cat insurance
- X₂ cat insurance
- X₃ equity residual
- X₄ 35 xs 65 reinsurance
- Gross = X₁ + X₂
- Ceded = 35 X₄
- Net = Gross Ceded
- Financing = $X_3 + X_4$
- Gross + Financing = 100

Cash Flow Characteristics

Characteristic	Insurance, risk assumption	Financing, risk bearing	
t = 0 flow	Fixed inflow	Fixed inflow	
t = 1 flow	Contingent outflow	Contingent outflow	
Skewness	Positive	Negative	
Margin t=0 flow – E[t=1 flow]	Positive to Ins Co.	Negative to Ins Co.	
Management	Underwriting / CUO Reins	urance Finance / CFO	
> Motivation	Initiated (bought) by insured	Initiated (sold) by insurer	

Motivation is the differentiating characteristic; it is invisible in cash flows

Pricing: t = 0 funding

Standard efficient market pricing rule: state-price density

- P(X) := E[XZ]
 - -X = random variable giving cash flow in each state of the world
 - -Z = state price density, values 1 in each state, reflects "the market"

• Z ≥ 0, E[Z] = 1

- Z aka likelihood ratio, Q-measure, risk-adjusted probabilities (Z x pdf)
- Work on sample space $\Omega = [0, 1]$ and treat Z as risk-adjusted probabilities
- E.g., Black-Scholes, CAPM
- -P(X) = E[X] + cov(X, Z)
- Problems with P as a model of insurance pricing
 - -Additive: P(X + Y) = P(X) + P(Y), means no diversification benefit
 - Homogeneous: P(-X) = -P(X), rather than positive homogeneous

Standard pricing rules ignore motivation

- Motivation is key: expect distinct prices depending on buyer/seller motivation
 - -A(X): **ask** price for X when the buyer (insured) initiates the transaction
 - -B(X): **bid** price for X when the seller (insurer) initiates
 - Same X in both cases
- No arbitrage: write X at ask and sell -X at bid yields X X = 0, a risk-free portfolio with value zero, hence proceeds A(X) + B(-X) = 0. Therefore

A(X) = -B(-X)B(X) = -A(-X)

• -P(-X) = -E[-XZ] = --E[XZ] = E[XZ] = P(X): ask price equals bid, no spread

convex risk

Better alternative: Spectral Pricing Rule (risk measure)

• $\rho(X) := \max \{ E[XZ] \mid Z \ge 0, E[Z] = 1, \text{ and other characteristics, } Z \text{ in } \mathcal{Z} \}$

- $\rho(X) = E[XZ_X]$ for Z_X in \mathcal{Z} , a customized **contact function** state price density - Hardy-Littlewood: X and Z_X must be comonotonic (increase together)
 - $-Z_X$ measures how much you care about loss of size X
- The set \mathcal{Z} of acceptable Z can be defined from a distortion function g, an increasing, concave function $[0, 1] \rightarrow [0, 1]$, by requiring for all $0 \le s \le 1$

$$\int_0^s Z(t)dt \le g(s)$$

E.g.,
$$Z(s) = g'(s)$$

Spectral pricing rules have positive bid-ask spreads

- $\rho(X) = \max \{ E[XZ] \mid Z \ge 0, E[Z] = 1, \text{ and other characteristics, } Z \text{ in } \mathcal{Z} \}$
- If \mathcal{Z} is large enough, then $\rho(X) > E[X]$ because Z_X weights bad (large) outcomes more than small ones; hence, interpret $\rho(X) = A(X)$ as the **ask** price

• B(X) < E[X] and spread is positive A(X) - B(X) = A(X) + A(-X) > A(X - X) = 0

Spectral pricing rules have many other nice properties

Pricing rule properties

convex risk

- a) Monotone: $X \le Y$ implies that $\rho(X) \le \rho(Y)$
- **b)** Sub-additive: respects diversification: $\rho(X + Y) \le \rho(X) + \rho(Y)$
- c) Comonotonic additive: no credit when no diversification. If outcomes X and Y imply same event order, then $\rho(X + Y) = \rho(X) + \rho(Y)$
- **d)** Law invariant: ρ(X) depends only on the distribution of X; no categorical line CoC

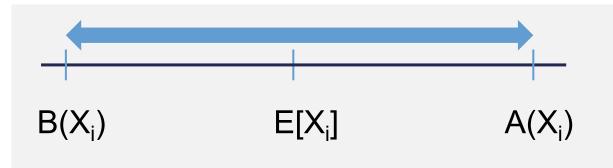
A **spectral risk measure** (SRM) $\rho(X)$ is characterized by (a)-(d). They have four representations:

- 1. Weighted average of VaRs
- 2. Weighted average of TVaRs
- 3. Worst over a set of probability scenarios, max { E[XZ] | Z in Z_g }
- 4. Distorted expected value $\rho_g(X) := \int_0^\infty g(S_X(x)) dx = \mathbb{E}[Xg'(S(X))]$

See: PIR Theorem 3, p.261

The (Linear) Natural Allocation

- $\rho(X) = E[XZ_X]$
- If $X = X_1 + ... + X_n$ it is natural to allocate $E[X_i Z_X]$ to unit i
- Need to be careful Z_X is unique
- In general $E[X_i Z_X] = E[X_i g'(S(X))]$
- Notation: $NA_X(X_i) := E[X_i Z_X]$



- Natural allocation lies between stand-alone bid and ask prices
- X_i comonotonic with X, NA = ask
 → pure insurance risk
- X_i anti-comon with X, NA = bid
 - \rightarrow pure financing risk

Spectral calculations with insurance cash flows

Scenario	X1	X2	Х	Ρ	S(X)	g(S)	Q=diff g(S)
3	22	0	22	0.1	0.9	0.974599	0.025401
2	28	0	28	0.1	0.8	0.923257	0.051342
0	36	0	36	0.1	0.7	0.853469	0.069788
1,4,5,6	34	6	40	0.4	0.3	0.433881	0.419588
7	45	10	55	0.1	0.2	0.299491	0.13439
8	25	40	65	0.1	0.1	0.154702	0.144789
9	25	75	100	0.1	0	0	0.154702
EP	31.7	14.9	46.6				
EQ	32.31	21.256	53.565				
LR	0.9811	0.701	0.87				

- EP = loss cost; EQ = technical premium
- Non-cat priced to 98% loss ratio (no expenses)
- Cat priced to 70%
- Overall 87%

 Collapse outcomes by value of X, E[• | X]

•
$$S(x) = Pr(X > x)$$

- Calibrated to 15% return with assets a = 100
- No default
- Z = Q / P
- EP, EQ sum product with P, Q columns

PIR Algos 11.1.1 p.271 and 15.1.1, p.397

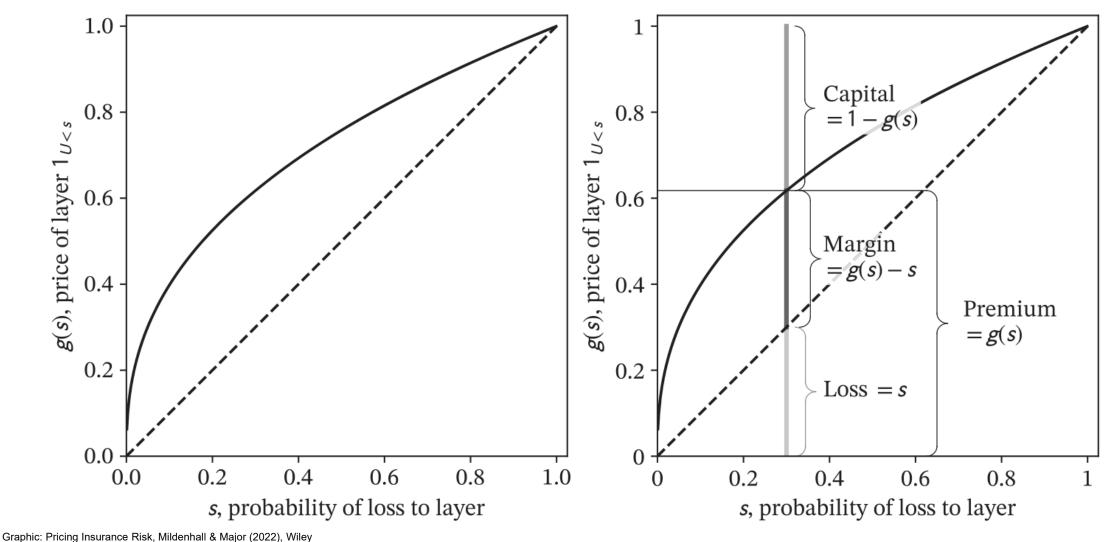
Spectral calculations with financing cash flows

Scenario	X3	X4	Financing
3	43	35	78
2	37	35	72
0	29	35	64
1,4,5,6	25	35	60
7	10	35	45
8	0	35	35
9	0	0	0
Expected	21.9	31.5	53.4
Price	16.84935	29.58543	46.43478
Return	0.299753	0.064713	0.15

- X₃ equity 30% return
- X₄ agg stop cat bond 6.47% return
- Overall return 15%

- Bid price: sort in descending order
- Expected value of t = 1 flow (EP)
- Price is minimum acceptable bid at t = 0 for cash flows made at t = 1 (EQ)
- Price column also equals min_z E[X_i Z]
- Return = Expected value / Price 1
- Achieves 15% overall return
- Implied ceded loss ratio: 64.6%

Distortion function: g(s) = ask price for Bernoulli 0/1 risk



Licensed by Stephen J Mildenhall under Creative Commons Attribution 4.0 Internationa

Determining g or Z

Licensed by Stephen J Mildenhall under Creative Commons Attribution 4.0 International

Calibrate g to 15% return: five usual suspect distortions

IR

			LIX
unit	X1	X2	total
distortion			
ссос	102.8%	65.5%	87.0%
ph	101.7%	66.5%	87.0%
wang	100.1%	68.0%	87.0%
dual	98.1%	70.1%	87.0%
tvar		72.9%	87.0%

- PIR §11.3 for a description of the constant cost of capital (CCoC), proportional hazard, Wang, dual, and TVaR distortions
- CCoC most sensitive to tail-risk; TVaR most sensitive to body-risk (volatility)
- Sensitives consistent with implied loss ratios (insurance) or returns (financing)

ROI

Calibrate g to 15% return: five usual suspect distortions

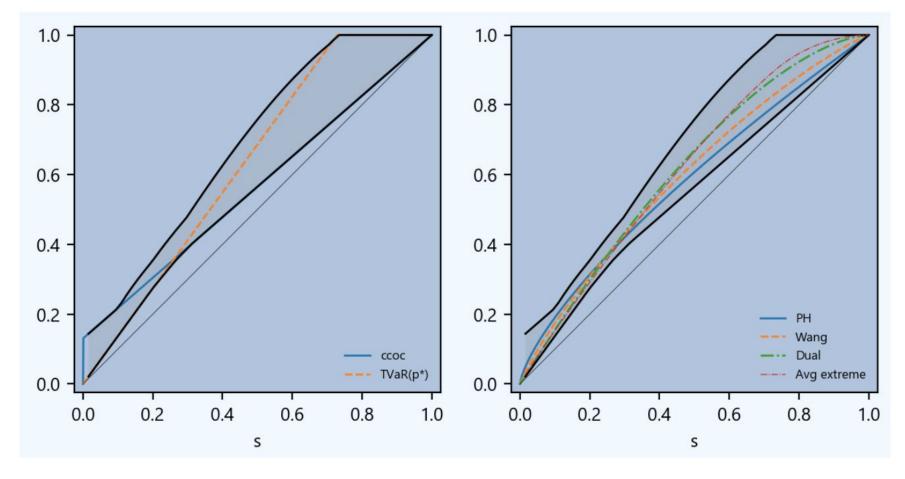
	unit	X1	X2	total
diste	ortion			
	ссос	102.8%	65.5%	87.0%
	ph	101.7%	66.5%	87.0%
	wang	100.1%	68.0%	87.0%
	dual	98.1%	70.1%	87.0%
	tvar	95.7%	72.9%	87.0%

- CCoC: negative margin for X₁, very expensive for cat, X₂
- TVaR: more balanced, positive returns for both lines

unit	Х3	X4	total
distortion			
ссос	15.0%	15.0%	15.0%
ph	21.0%	11.2%	15.0%
wang	25.0%	8.9%	15.0%
dual	30.0%	6.5%	15.0%
tvar	34.9%	4.3%	15.0%

- X₄ cat cover price declines with distortion body-centricity
- X₃ equity price increases with distortion body-centricity

Calibrate g to 15% return: five usual suspect distortions



- Shaded area shows all possible distortions
- Left plot: CCoC and TVaR, extreme tail and body sensitivity
- Right plot: PH, Wang, Dual

The Switcheroo

Can exchange X_i and E[X_i | X]

- $E[X_i | X]$ is a random variable: $E[X_i | X](\omega) = E[X_i | X=X(\omega)]$
- Reduces multi-dimensional problem to one dimension
- $E[X_i Z] = E[E[X_i Z | X]] = E[E[X_i | X] Z]$
 - Having arranged all Z to be functions of X (linear natural allocation)
- Stand-alone price of X_i and E[X_i | X] are equal
- Linear natural allocation to X_i and E[X_i | X] are equal
- For simulations with distinct X values, E[X_i | X] = X_i

E[X_i | X] and the natural allocation

- Have seen the natural allocation to X_i lies between stand-alone bid and ask prices for X_i, in fact more is true:
 - If $E[X_i | X]$ is comonotonic with X, then natural allocation equals $A(E[X_i | X])$
 - Pure risk transfer
 - If $E[X_i | X]$ is anti-comonotonic with X, then natural allocation equals $B(E[X_i | X])$
 - Pure financing
- Easier to meet, test, and see conditions on E[X_i | X] than X_i
- If X_i are all thin-tail then E[X_i | X] increases with X (Effron's theorem)
 - Ideal insurance situation, most effective diversification

Decomposing the natural allocation price

- Can decompose $E[X_i | X]$ into $X_i^+ X_i^-$ where X_i^+ , X_i^- are comonotonic with X
- Produces a split $NA(X_i) = E[(X_i^+ X_i^-)Z] = A(X_i^+) A(X_i^-)$

 $A(X_i^+)$ = insurance cost with a positive margin

 $-A(X_i)$ = financing benefit from selling the capital benefit of X_i , negative margin

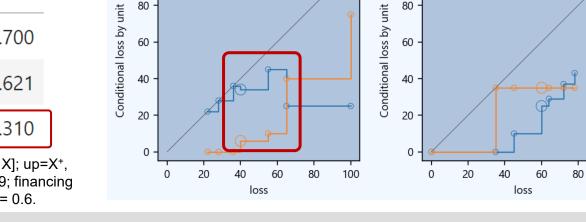
100

- X1

Applies to X₁ but not X₂ which is comonotonic with X

		lna	sa	proj_sa	up	down	umd
unit							
X1	el	31.700	31.700	31.700	37.100	5.400	31.700
	bid	31.621	28.999	29.273	34.288	2.667	31.621
	ask	32.310	34.288	34.084	40.006	7.697	32.310

Key Ina: linear natural allocation; sa = stand-alone, proj_sa = stand-alone $E[X_i | X]$; up=X⁺, down=X⁻, umd = up price minus down; Insurance (up) margin = 40.0 – 37.1 = 2.9; financing (down) offset = 7.7 – 5.4 = 2.3, net 2.9 – 2.3 = 0.6; net Ina margin = 32.3 – 31.7 = 0.6.



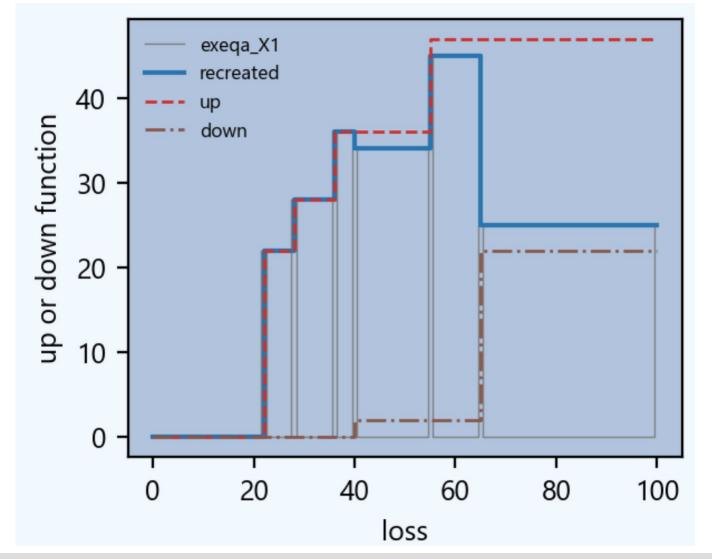
Insurance

Conditional loss by unit as a function of total loss

Capital

100

Decomposing the natural allocation price (details)



- Decomposition is not always possible in theory, but it is in practice.
- exeqa_X1 = E[X1 | X]

Applications

- Diversifying cat: Chile quake, Japan, Australia
- Diversifying cat is not comonotonic with total losses
 → has financing offset which rationalizes a lower margin
- Management: underwriting departments selling capital is fraught

Practical demonstration

Conclusions

1. SRMs are a practical but under-specified pricing tool.

 Parameterize to premium and financing data, reveals risk appetites.

3. Decompose premiums into insurance and financing parts.

4. Implement calculations using aggregate Python library.